data_analysis_plotting_tools.PlottingTool#
Tool to facilitate data set plotting.
Module Contents#
Classes#
Tool to facilitate data set plotting. |
- class data_analysis_plotting_tools.PlottingTool.PlottingTool#
Tool to facilitate data set plotting.
- __start_local_bokeh_server(bkapp) None#
Private Method. Starts Bokeh to run in Browser.
- __get_random_color_code() str#
Private Method. Returns random hexadecimal color code.
- __is_date(string: str, fuzzy: bool = False)#
Private Method. Return whether the string can be interpreted as a date.
- Parameters:
string – str, string to check for date
fuzzy – bool, ignore unknown tokens in string if True
- add_data_set(df_name: str, data_frame: pandas.DataFrame, disable_feedback: bool = False) None#
Add a data set to be used.
- Parameters:
df_name (str) – Name to give the data set.
data_frame (pd.DataFrame) – Data set as pandas DataFrame.
disable_feedback (bool) – Decide whether a confirmation message should be displayed or not.
- Return type:
None.
- plot_interactive(data_frames: dict) None#
Plot data sets on a preset 2D interactive chart.
- Parameters:
data_frames (dict) –
Specifies the data sets and columns to use. First mentioned column will be on x-axis. Columns specified as x-axis must be exactly the same.
Example: {‘berlin’: [‘date’, ‘rain_sum’], ‘paris’: [‘date’, ‘temperature’]}
- Return type:
None.
- plot_univariate_graphs(df_name: str, number_columns_unvariate_graphs: int) None#
Plot an univariate pairplot from the numeric variables in the data set.
- Parameters:
df_name (str) – Name of the data set to be plotted.
number_columns_unvariate_graphs (int) – Decide on how many rows the plots should be displayed.
- Return type:
None.
- plot_bivariate_graphs(df_name: str, numeric_variables: list[str]) None#
Plot a bivariate pairplot from the numeric variables in the data set.
- Parameters:
df_name (str) – Name of the data set to be plotted.
numeric_variables (list[str]) – Choose numeric variables to plot by entering the name of the variable in the list.
- Return type:
None.
- plot_correlation_heatmap(df_name: str, numeric_variables: list[str]) None#
Plot a correlation heatmap using the numeric variables in the data set.
- Parameters:
df_name (str) – Name of the data set to be plotted.
numeric_variables (list[str]) – Choose numeric variables to plot by entering the name of the variable in the list.
- Return type:
None.
- get_regression_model_summary(df_name: str, target_variable: str, predictor_variables: list[str], disable_feedback: bool = False, disable_plotting: bool = False)#
Plot a regression model based on variables to be studied.
- Parameters:
df_name (str) – Name of the data set to be plotted.
target_variable (str) – Variable to be predicted.
predictor_variables (list[str]) – Input variables on which the output would be based.
disable_feedback (bool) – Whether to print feedbacks, like a model summary, into the console.
disable_plotting (bool) – Whether the regression model should be plotted.
- Return type:
Model summary.